

- In a good running system, the pouring speed and pouring temperature are under the control of the running system, not the pourer.
- □ The functions of a good running system are:
 - 1. Economy of size
 - 2. The filling of mould at the required speed for most castings, this roughly equals 0.5 m/s
 - **3.** The delivery of only liquid metal into the mould cavity no other phases such as slag, oxide, sand, air or other gases
 - 4. The elimination of surface turbulence preferably at an early state in the running system; should gather the fragmented stream due to the long fall through the sprue together again
 - 5. Establish proper temperature gradient
 - 6. Ease of removal

8/28

Top pouring	Bottom pouring
Faster pouring rate, less fluidity requirement	Filling against gravity, slow pouring rate; more fluid liquid preferred
Severe splashing and mould erosion	Elimination of splashing and mould erosion
Oxidation of liquid metal resulted	Quiet entry to mould cavity; less turbulence, less oxide formation
Favourable temperature gradient	Unfavourable temperature gradient

Pressurised system	Unpressurised system
Gate is used as choke	Sprue base is used as choke
Velocity increases as the liquid flows from sprue to runner to gate	Velocity decreases as liquid flows from sprue to runner to gate
Turbulence resulted	Turbulence minimised
Gating system is kept full due to back pressure	Careful design is required to keep gating system full
Velocity in each of multiple gates (of equal area) is equal	Obtaining equal flow in multiple gates is difficult
Volume of gating system is smaller producing high casting yield	High volume of gating system producing low casting yield

(sprue bottom area : runner a	rea : gate area)
Pressurized system:	1.0 : 0.8 : 0.6 1.0 : 1.0 : 0.8
Unpressurized system:	1.0 : 2.0 : 4.0 1.0 : 4.0 : 4.0
Natural system:	1.0 : 1.2 : 1.4
Slightly pressurized system:	1.0:1.1:1.2 1.0:1.1:1.2

18/28

26/28

Next Class MME 345, Lecture B:14

The Design of Gating System

3. Theoretical considerations in gating design